Solve x^2-x-756=0 | Microsoft Math Solver (2024)

a+b=-1 ab=-756

To solve the equation, factor x^{2}-x-756 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.

1,-756 2,-378 3,-252 4,-189 6,-126 7,-108 9,-84 12,-63 14,-54 18,-42 21,-36 27,-28

Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -756.

1-756=-755 2-378=-376 3-252=-249 4-189=-185 6-126=-120 7-108=-101 9-84=-75 12-63=-51 14-54=-40 18-42=-24 21-36=-15 27-28=-1

Calculate the sum for each pair.

a=-28 b=27

The solution is the pair that gives sum -1.

\left(x-28\right)\left(x+27\right)

Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.

x=28 x=-27

To find equation solutions, solve x-28=0 and x+27=0.

a+b=-1 ab=1\left(-756\right)=-756

To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-756. To find a and b, set up a system to be solved.

1,-756 2,-378 3,-252 4,-189 6,-126 7,-108 9,-84 12,-63 14,-54 18,-42 21,-36 27,-28

Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -756.

1-756=-755 2-378=-376 3-252=-249 4-189=-185 6-126=-120 7-108=-101 9-84=-75 12-63=-51 14-54=-40 18-42=-24 21-36=-15 27-28=-1

Calculate the sum for each pair.

a=-28 b=27

The solution is the pair that gives sum -1.

x\left(x-28\right)+27\left(x-28\right)

Factor out x in the first and 27 in the second group.

\left(x-28\right)\left(x+27\right)

Factor out common term x-28 by using distributive property.

x=28 x=-27

To find equation solutions, solve x-28=0 and x+27=0.

x^{2}-x-756=0

All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

x=\frac{-\left(-1\right)±\sqrt{1-4\left(-756\right)}}{2}

This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -756 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.

x=\frac{-\left(-1\right)±\sqrt{1+3024}}{2}

Multiply -4 times -756.

x=\frac{-\left(-1\right)±\sqrt{3025}}{2}

Add 1 to 3024.

x=\frac{-\left(-1\right)±55}{2}

Take the square root of 3025.

x=\frac{1±55}{2}

The opposite of -1 is 1.

x=\frac{56}{2}

Now solve the equation x=\frac{1±55}{2} when ± is plus. Add 1 to 55.

x=-\frac{54}{2}

Now solve the equation x=\frac{1±55}{2} when ± is minus. Subtract 55 from 1.

x=-27

Divide -54 by 2.

x=28 x=-27

The equation is now solved.

x^{2}-x-756=0

Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.

x^{2}-x-756-\left(-756\right)=-\left(-756\right)

Add 756 to both sides of the equation.

x^{2}-x=-\left(-756\right)

Subtracting -756 from itself leaves 0.

x^{2}-x=756

Subtract -756 from 0.

x^{2}-x+\left(-\frac{1}{2}\right)^{2}=756+\left(-\frac{1}{2}\right)^{2}

Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.

x^{2}-x+\frac{1}{4}=756+\frac{1}{4}

Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.

x^{2}-x+\frac{1}{4}=\frac{3025}{4}

Add 756 to \frac{1}{4}.

\left(x-\frac{1}{2}\right)^{2}=\frac{3025}{4}

Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.

\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3025}{4}}

Take the square root of both sides of the equation.

x-\frac{1}{2}=\frac{55}{2} x-\frac{1}{2}=-\frac{55}{2}

Simplify.

x=28 x=-27

Add \frac{1}{2} to both sides of the equation.

x ^ 2 -1x -756 = 0

Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.

r + s = 1 rs = -756

Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C

r = \frac{1}{2} - u s = \frac{1}{2} + u

Two numbers r and s sum up to 1 exactly when the average of the two numbers is \frac{1}{2}*1 = \frac{1}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>

(\frac{1}{2} - u) (\frac{1}{2} + u) = -756

To solve for unknown quantity u, substitute these in the product equation rs = -756

\frac{1}{4} - u^2 = -756

Simplify by expanding (a -b) (a + b) = a^2 – b^2

-u^2 = -756-\frac{1}{4} = -\frac{3025}{4}

Simplify the expression by subtracting \frac{1}{4} on both sides

u^2 = \frac{3025}{4} u = \pm\sqrt{\frac{3025}{4}} = \pm \frac{55}{2}

Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u

r =\frac{1}{2} - \frac{55}{2} = -27 s = \frac{1}{2} + \frac{55}{2} = 28

The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.

Solve x^2-x-756=0 | Microsoft Math Solver (2024)

References

Top Articles
Die E-Nummern in Lebensmitteln
Zinc Itu Apa? Informasi Manfaat dan Cara Kerja | HonestDocs
Brokensilenze Website
Butte Jail Roster Butte Mt
Express Pay Cspire
Craigslist Kentucky Cars And Trucks - By Owner
Indio Mall Eye Doctor
I Feel Pretty (2018) | Rotten Tomatoes
Cold War Brainpop Answers
Cristiano Ronaldo's Jersey Number: The Story Behind His No. 7 Shirt | Football News
Rs3 Rituals
Craigslist Com Humboldt
Fkiqx Breakpoints
102 Weatherby Dr Greenville Sc 29615
Cassano's Pizza King Menu and Prices
Ihop Logopedia
Spicy Korean Gochujang Tofu (Vegan)
Sandra Sancc
Ice Crates Terraria
What To Do With Mysterious Camera In Sakura Stand
Fortnite Chapter 5: All you need to know!
Anvil In Shattrath
Espn Masters Leaderboard
Ihub Kblb
Milwaukee Zoo Ebt Discount
Shauna's Art Studio Laurel Mississippi
Go Karts For Sale Near Me Under $500
Kristen Stewart and Dylan Meyer's Relationship Timeline
Hingham Police Scanner Wicked Local
Meet Kristine Saryan, Scott Patterson’s Wife
Craigslist Cars Los Angeles
Dr Yakubu Riverview
Dl Delta Extranet
Dki Brain Teaser
How To Create A Top Uber Boss Killer In POE 3.25 League?
Below Her Mouth | Rotten Tomatoes
Weather Tomorrow Hourly At My Location On Netflix Movies
Iconnect Seton
Erskine Plus Portal
Matt Laubhan Salary
Mtb Com Online
Busted Bell County
Babyrainbow Private
How To Get Genji Cute Spray
Why Did Jen Lewis Leave Wavy 10
Does Speedway Sell Elf Bars
Jeff Buley Obituary
Make Monday Better: Dive Into These Hilarious Monday Memes!
Pike County Buy Sale And Trade
Opsahl Kostel Funeral Home & Crematory Yankton
Craigslist Org Las Vegas Cars
Pollen Count Butler Pa
Latest Posts
Article information

Author: Gov. Deandrea McKenzie

Last Updated:

Views: 5997

Rating: 4.6 / 5 (66 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.